
Blue Moon Rendering Tools
User Manual — release 2.6

Exluna, Inc.

1525 Josephine St.
Berkeley, CA 94703

December 1, 2000

Contents

1 Introduction 3
1.1 Reporting Bugs . 4
1.2 Copyrights & Trademarks . 4
1.3 Licensing Arrangement . 5

2 Previewing scene files with rgl 8
2.1 Command Line Options . 9

2.1.1 Window Size and Position . 9
2.1.2 Drawing Styles . 9
2.1.3 File Output Options . 10
2.1.4 Animation . 10

2.2 Implementation-dependent Options and Attributes 11
2.2.1 Search Paths . 11
2.2.2 Drawing Options . 12

2.3 Limitations of rgl . 12
2.4 Odds and Ends . 13

3 Photo-realistic rendering with rendrib 14
3.1 Command Line Options . 14

3.1.1 Image Display Options . 15
3.1.2 Status Output . 16
3.1.3 Radiosity . 16
3.1.4 Miscellaneous Options . 17

3.2 Implementation-dependent Options and Attributes 17
3.2.1 Rendering Options . 18
3.2.2 Search Paths . 19
3.2.3 Visibility of Primitives . 20
3.2.4 Displacement and Subdivision Attributes 20
3.2.5 Object Appearance . 21
3.2.6 Light Source Attributes . 22
3.2.7 Finite Element Radiosity Controls 22
3.2.8 Monte Carlo Global Illumination Controls 24
3.2.9 Options for Photon Mapping for Caustics 25
3.2.10 Other Options . 26

3.3 Extra Ray Tracing Features . 26

1

3.4 Indirect Illumination . 28
3.4.1 Using Finite Element Radiosity 29
3.4.2 Using Monte Carlo Irradiance 30

3.5 Caustics . 31
3.6 Optimizing Rendering Time . 32
3.7 Compatibility Issues . 34

3.7.1 RenderMan Interface Compliance 34
3.7.2 Issues with PRMan . 35

3.8 Odds and Ends . 35

4 Shaders and Textures 36
4.1 Compiling interpreted shaders with slc 36
4.2 Compiling .sl files to DSO’s/DLL’s 38
4.3 Using slctell to list shader arguments 39
4.4 Making tiled TIFF files with mkmip 40

5 Miscellaneous Tools 42
5.1 Writing RIB with libribout . 42
5.2 Parsing Shader Arguments . 43
5.3 iv – an Image Viewer . 43

5.3.1 Invoking iv from the command line 43
5.3.2 iv hot keys and mouse commands 44

5.4 Simple Image Compositing with composite 45
5.5 Setting default options and attributes 46
5.6 farm: Poor Man’s Render Farm . 46

5.6.1 How to use farm . 46
5.6.2 What farm does . 47
5.6.3 Important farm restrictions 47

6 Using BMRT as a “Ray Server” for PRMan 48
6.1 Introduction . 48
6.2 Background: DSO Shadeops in PRMan 49
6.3 How Much Can We Get Away With? 50
6.4 New Functionality . 51
6.5 How to use it . 53
6.6 Pros and Cons . 54
6.7 Efficiency Tips . 54

Bibliography 56

2

Chapter 1

Introduction

The Blue Moon Rendering Tools (BMRT) are a collection of programs that render
3-D scene models.

BMRT uses some APIs that are very similar to those described in the published
RenderMan Interface Specification. However, BMRT is not associated with Pixar,
and no claims are made that BMRT is in any way a compatible replacement for Ren-
derMan. Those who want a licensed implementaion of RenderMan should contact
Pixar directly.

Despite these technical/legal terms, you may find that most applications, scene
files, and shaders written to conform to the RenderMan Interface can also use BMRT
without modification.

This document is intended for the reader who is familiar with the concepts of
computer graphics and already is fluent in both the RenderMan procedural inter-
face and the RIB archival format (due to BMRT’s similarities to that published
specification). For more detailed information about the RenderMan standard, we
recommend Advanced RenderMan: Creating CGI for Motion Pictures by Anthony
Apodaca and Larry Gritz, The RenderMan Companion by Steve Upstill, or the offi-
cial RenderMan Interface Specification, available from Pixar. All of these texts are
fully detailed and clearly written, and no attempt will be made here to duplicate
the information in these references.

The parts of BMRT you’ll most likely use are outlined below:

rgl A previewer for RIB files which runs on top of OpenGL. Primitives display as
lines or Gouraud-shaded polygons.

rendrib A high quality renderer which uses some of the latest techniques of radios-
ity and ray tracing to produce near photorealistic images.

slc A compiler for shaders, allowing you to write your own procedures for defining
the appearance of surfaces, lights, displacements, volume attenuation, and
pixel operations.

mkmip A program to pre-process texture, shadow, and environment map files for
more efficient access during rendering.

3

libribout A library of ‘C’ language bindings for procedures that result in an archival
record that can be rendered at a later time.

slctell A utility that prints out the arguments and their defaults for a particular
compiled shader.

libslc A library allowing you to query the argument names and defaults of a com-
piled shader.

1.1 Reporting Bugs

If you come across a bug in the renderer, or if you think you’ve come across a
bug in the renderer, please submit a bug report. However, please double check
the documentation, both in this file and in Win32README.html, if appropriate, to
ensure that you’re using the program correctly, before submitting a report. However,
if the renderer is dumping core or reporting a Windows application error, you have
certainly found a bug, regardless of how you were using the renderer.

The Exluna bug report e-mail address is bugs@exluna.com. Please include as
much information as possible in bug reports, including:

1. The version of BMRT you’re using (run rendrib - to see the version number).

2. The operating system you’re using.

3. The exact error message printed, if any.

4. RIB files, shaders, and a precise description of how to trigger the bug using
them.

Thanks for taking the time to report those bugs–it all leads to a better renderer
for everyone in the end.

1.2 Copyrights & Trademarks

The Blue Moon Rendering Tools (BMRT), all of the programs contained therein,
and their documentation are:

c©Copyright 1990-2000 Exluna, Inc. and Larry Gritz. All Rights Reserved.

The TIFF I/O library used by BMRT is: Copyright c©1988-1997 Sam Leffler,
Copyright c©1991-1997 Silicon Graphics, Inc. This library may be freely distributed,
and is available from: www.libtiff.org

The JPEG I/O library used by BMRT is from the Independent JPEG Group
and is copyright c©1991-1998, Thomas G. Lane. The software is available for free
from: http://www.ijg.org/

On some platforms, the implementations of rendrib and rgl may make use of the
Mesa library, by Brian Paul. This excellent software is available in source form from
www.mesa3d.org

4

RenderMan (R) is a registered trademark of Pixar.
OpenGL is a registered trademark of Silicon Graphics.

1.3 Licensing Arrangement

BMRT release 2.6 is what’s known as “freeware.” This means that there is no charge
to download and run it. However, you may not redistribute it in any way without
a written agreement from Exluna, Inc. This software is not in the public domain.

These license terms apply to the BMRT 2.6 software (and minor revisions thereof,
e.g. 2.6.1). They do not apply to any other releases and may change significantly
and without notice in the future.

EXLUNA, INC.

BLUE MOON RENDERING TOOLS

END-USER SOFTWARE LICENSE AGREEMENT

IMPORTANT - READ BEFORE COPYING, INSTALLING OR USING.

Do not use or load Blue Moon Rendering Tools (”BMRT”) and any associated
materials (collectively, the ”Software”) until you have carefully read the follow-
ing End-User Software License Agreement (”Agreement”). The term ”Software”
shall also include any third party software incorporated into BMRT and any up-
grades, modified versions or updates of the Software licensed to you by Exluna,
Inc. (”Exluna”). By loading or using the Software, you agree to the terms of this
Agreement. If you do not wish to so agree, do not install or use the Software.

By clicking the ”ACCEPT” or ”YES” or any other button referenced to this
Agreement that suggests you agree and/or by installing, using, or copying this
Software, you are becoming a party to, indicating your consent to, and agreeing
to be bound by the terms of this Agreement, without modification. If you do not
understand and accept all of the following terms and conditions, including those
terms and conditions regarding the collection of user information, click the ”DO
NOT ACCEPT” or ”NO” or any other button referenced to this Agreement that
suggests you disagree, and you must not install, use, or copy this Software.

1. License. Subject to the terms of this Agreement, Exluna hereby grants
you a revocable, non-exclusive, non-transferable license to copy the Software onto a
single computer for your personal use and to make one back-up copy of the Software,
provided that any and all copies made must contain all of the original and unmodified
proprietary notices, including, but not limited to, this License Agreement.

2. Restrictions. You acknowledge and agree that you shall not (a) modify
or create any derivative works of the Software or documentation; (b) attempt to
disable the Software by any means or in any manner; (c) attempt to decompile,
disassemble, reverse engineer, or otherwise attempt to derive the source code for the
Software (except to the extent applicable laws specifically prohibit such restriction);
(d) redistribute, encumber, sell, rent, lease, sublicense, or otherwise transfer or
disclose the Software to any third party; or (e) remove or alter any trademark, logo,
copyright or other proprietary notice, legend, symbol or label in the Software.

5

3. Ownership. All right, title and interest in and to all copies of the Software,
including, but not limited to, intellectual property rights, remains with Exluna or its
third party suppliers. The Software is copyrighted and protected by the laws of the
United States and other countries, and international treaty provisions. Exluna may
make changes to the Software, or to items referenced therein, at any time without
notice, but is not obligated to support or update the Software. Except as otherwise
expressly provided, Exluna grants no express or implied right under Exluna’s or any
of its third party suppliers’ patents, copyrights, trademarks, or other intellectual
property rights. You agree that you will take no action that might jeopardize, limit,
or interfere in any way with Exluna’s or its third party suppliers’ ownership or other
rights regarding the Software.

4. Disclaimer of Warranty and Limitation of Liability. THE SOFTWARE IS
PROVIDED ON AN ”AS IS” BASIS. EXLUNA DOES NOT WARRANT THAT
OPERATION OF THE SOFTWARE WILL BE UNINTERRUPTED, ERROR
FREE, OR VIRUS-FREE, OR THAT ANY DEFECT IN THE SOFTWARE WILL
BE CORRECTED. EXLUNA EXPRESSLY DISCLAIMS ANY AND ALL WAR-
RANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE, AND ANY WARRANTY OF NON-INFRINGEMENT.
THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL PART
OF THIS AGREEMENT, AND NO USE OF THE SOFTWARE IS AUTHORIZED
HEREUNDER EXCEPT UNDER THIS DISCLAIMER. TO THE MAXIMUM
EXTENT PERMITTED BY APPLICABLE LAW, YOU AGREE THAT IN NO
EVENT SHALL EXLUNA BE LIABLE FOR ANY INDIRECT, SPECIAL, INCI-
DENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR IN CON-
NECTION WITH THIS AGREEMENT, EVEN IF EXLUNA HAS BEEN AD-
VISED OF THE POSSIBILITY THEREOF, AND REGARDLESS OF THE LE-
GAL OR EQUITABLE THEORY (CONTRACT, TORT OR OTHERWISE) UPON
WHICH THE CLAIM IS BASED. YOU ALSO AGREE THAT EXLUNA’S EN-
TIRE LIABILITY TO YOU OR ANY THIRD PARTY FOR ANY CLAIM OR
DEMAND ARISING FROM OR RELATED TO THIS AGREEMENT SHALL
NOT EXCEED, IN THE AGGREGATE, THE SUM OF THE FEE YOU PAID
FOR THE PRODUCT (IF ANY), WITH THE SOLE EXCEPTION OF DEATH
OR PERSONAL INJURY CAUSED BY THE NEGLIGENCE OF EXLUNA, TO
THE EXTENT APPLICABLE LAW PROHIBITS THE LIMITATION OF SUCH
DAMAGES.

5. Indemnity. You agree to indemnify and hold Exluna, its successors, assigns,
subsidiaries, affiliates, officers, directors, agents, and employees harmless from any
claim or demand, including reasonable attorneys’ fees, made by any third party due
to or arising out of your failure to comply with this Agreement or your violation of
any law or the rights of any third party.

6. Termination. This Agreement shall be effective unless and until terminated.
Exluna may, without prejudice to any other rights under this Agreement or applica-
ble law, terminate the license granted in this Agreement at any time without notice
to you if you fail to comply with any of the terms and conditions of this Agreement.

6

Upon any termination of this Agreement, all rights granted to you under this Agree-
ment shall immediately terminate, and you shall immediately destroy the Software
or return all copies of the Software to Exluna.

7. Miscellaneous. (a) This Agreement constitutes the entire agreement be-
tween the parties concerning the subject matter hereof; (b) this Agreement may be
amended by Exluna at any time upon written notice of the revised terms hereof; (c)
this Agreement and any dispute arising out of it shall be governed by the laws of
the State of California, USA, excluding its principles of conflicts of law; (d) unless
otherwise agreed in writing, all disputes relating to this Agreement (excepting any
dispute relating to intellectual property rights) shall be subject to final and binding
arbitration in San Francisco, California, conducted by the American Arbitration
Association, with the losing party paying all costs of arbitration; (e) the parties
hereby consent to the personal jurisdiction of, and agree that any legal proceeding
with respect to or arising under this Agreement or necessary to protect the rights or
property of that party pending the completion of arbitration will be brought in the
state or federal courts sitting in the State of California, County of San Francisco;
(f) this Agreement shall not be governed by the United Nations Convention on Con-
tracts for the International Sale of Goods; (g) if any provision in this Agreement
should be held illegal or unenforceable by a court having jurisdiction, such provision
shall be modified to the extent necessary to render it enforceable without losing its
intent or severed from this Agreement if no such modification is possible, and other
provisions of this Agreement shall remain in full force and effect; (h) a waiver by
either party of any term or condition of this Agreement or any breach thereof, in
any one instance, shall not waive such term or condition or any subsequent breach
thereof; (i) the provisions of this Agreement that require or contemplate perfor-
mance after the expiration or termination of this Agreement shall be enforceable
notwithstanding said expiration or termination; (j) this Agreement shall be binding
upon and shall inure to the benefit of the parties, their successors, and assigns; (k)
neither party shall be in default or be liable for any delay, failure in performance
(excepting the obligation to pay), or interruption of service resulting directly or in-
directly from any cause beyond its reasonable control, and; (l) if any dispute arises
under this Agreement, the prevailing party shall be reimbursed by the other party
for any and all legal fees and costs associated therewith.

9. US Government Restricted Rights Legend. The Software is provided with
”RESTRICTED RIGHTS.” Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in FAR52.227-14 and DFAR252.227-7013 et seq.
or its successor. Use of the Software by the Government constitutes acknowledgment
of Exluna’s proprietary rights therein. Contractor or Manufacturer is Exluna, Inc.,
1525 Josephine Street, Berkeley, California 94703. CA1 - 243992.2

7

Chapter 2

Previewing scene files with rgl

Once a scene file is created, one may use the rgl program to display a preview of the
scene. Geometric primitives are displayed either as Gouraud-shaded polygons with
simple shading and hidden surface removal performed, or as a wireframe image.

The following command will display a preview of the animation in an OpenGL
window:

rgl myfile.rib

There are several command line options which can be given (listed in any order,
but prior to the filename). The following sections describe these options. The
different options may be used together when they are not inherently contradictory.

If no filename is specified to rgl, it will attempt to read the scene from standard
input (stdin). This allows you to pipe output of a scene-generating process directly
to rgl. For example, suppose that myprog writes to its standard output. Then you
could display frames from myprog as they are being generated with the following
command:

myprog | rgl

The scene file that you specify may contain either a single frame or multiple
frames (if it is an animation sequence). The rgl program is designed primarily for
previewing animation sequences of many frames. The default is to display all of the
frames specified in the file as quickly as possible.

When the last frame is displayed, it will remain in the window. If you hit the
ESC key (with the mouse in the drawing window), rgl will terminate.

Though the output of rgl is in color, it is important to note that it is not designed
to be a particularly accurate preview of a rendered image. It really cannot be, since
there is no way for rgl to know very much about the types of shaders which you are
using. It does a fairly good job of matching ambient, point, distant, and spot lights.
But it can’t figure out area lights or any nonstandard light source types. Also,
every surface is displayed as if it were “matte,” regardless of the actual surface
specification.

Note that rgl can also display primitives as lines. This is done by invoking:

8

rgl -lines myfile.rib

2.1 Command Line Options

The following subsection details command line options alter the way in which rgl
creates and/or displays images.

2.1.1 Window Size and Position

-res xres yres

Sets the resolution of the output window. Note that if the scene file contains
a Format statement which explicitly specifies the image resolution, then the
-res option will be ignored and the window will be opened with the resolution
specified in the Format statement.

2.1.2 Drawing Styles

-1buffer

Rather than render the polygon preview to the “back buffer” and displaying
frames as they finish (as you would want especially if you are previewing
an animation), this option draws to the front buffer, thus allowing you to
see the scene as rendering progresses. The -1buffer option may be used in
combination with any of the other drawing style options.

-unlit

Lights all geometry with a single light at the camera position. This is useful
for using rgl to preview a scene that does not contain light sources. The
-unlit option may be used in combination with any of the other drawing
style options.

-lines

Rather than the default drawing mode of filled-in Gouraud-shaded polygons,
this option causes the images to be rendered as lines. Note that this cannot
be used in combination with -sketch.

-sketch

It’s not clear what the real use of this is, but it makes an image that looks a
little like a human-drawn sketch of the objects. Note that this cannot be used
in combination with -lines.

-rd multiplier

9

You can speed up rgl by changing the refinement detail that it uses to convert
curved surfaces to polygons by using the -rd command line option, which
takes a single numerical argument, generally between 0 and 1. The lower the
value, the fewer polygons will be used to approximate curved surfaces. Using
a value of 1 will result in identical results as if you did not use the -rd option
at all. Good values to try are 0.75 and 0.5. If you go below 0.25, the curved
surface primitives may become unrecognizable, though they will certainly be
drawn quickly. If you use values larger than 1, even more polygons than usual
will be used to approximate the curved surfaces.

IMPORTANT NOTE: the -rd option can only speed up the rendering of
curved surface primitives (e.g. spheres, cylinders, bicubic patches, NURBS).
It WILL NOT speed up the drawing of polygons. If your model contains too
many polygons to be drawn quickly, the -rd option will not help you.

2.1.3 File Output Options

-dumprgba
-dumprgbaz

The default operation of rgl simply previews the scene to a window on your
display. But using the -dumprgba option instead causes the resulting preview
image to be saved to a TIFF file. The filename of the TIFF file is taken from
the Display command in the file itself, or ri.tif if no Display command is
present in the file. The -dumprgbaz option does the same thing as -dumprgba,
but also saves the z buffer values to a file. The z values are saved in the same
zfile format used by Pixar’s PhotoRealistic RenderMan, and the name of the
file is also taken from the Display command, substituting “zfile” for “tif” in
the filename.

2.1.4 Animation

-frames first last

Sometimes you may only want to preview a subset of frames from a multi-frame
file. You can do this by using the -frames command line option. This option
takes two integer arguments: the first and last frame numbers to display. If you
are going to use this option, it is recommended that your frames be numbered
sequentially starting with 0 or 1.

-sync framespersecond

When previewing a series of frames for an animation, it is often necessary to
synchronize the display of frames to the clock in order to check the timing
of the animation when it is played back at a particular number of frames per
second. The default action of rgl is to display the frames as fast as possible.

10

You can override this, causing rgl to try to display a particular number of
frames per second, by using the -sync command line option.

-nowait

By default, the last frame will stay in the drawing window until you hit the
ESC key. The -nowait causes rgl to terminate immediately after displaying
the last frame in the sequence (for example, if it is part of an automated
demo).

2.2 Implementation-dependent Options and Attributes

Various implementation-specific behaviors of a renderer may be set using two com-
mands: Option and Attribute. Options apply to the entire scene and should be
specified prior to WorldBegin. Attributes apply to specific geometry, are generally
set after the WorldBegin statement, and bind to subsequent geometry.

2.2.1 Search Paths

Various external files may be needed as the renderer is running, and unless they
are specified as fully-qualified file paths, the renderer will need to search through
directories to find those files. There exists an option to set the lists of directories in
which to search for these files.

Option "searchpath" "archive" [pathlist]
Option "searchpath" "procedural" [pathlist]

Sets the search path that the renderer will use for files that are needed at
runtime. The "archive" path specifies where to find files that are inclued
using the ReadArchive directive. The "procedural" path specifies where to
find programs and DSO’s that are required by RiProcedural.

Search path types in BMRT are specified as colon-separated lists of directory
names (much like an execution path for shell commands). There are two special
strings that have special meaning in BMRT’s search paths:

• & is replaced with the previous search path (i.e., what was the search path
before this statement).

• $ARCH is replaced with the name of the machine architecture (such as linux,
sgi m3, etc.). This allows you to keep compiled software (like DSO’s) for
different platforms in different directories, without having to hard-code the
platform name into your file.

For example, you may set your procedural path as follows:

Option "searchpath" "procedural"
["/usr/local/bmrt:/usr/local/bmrt/$ARCH:&"]

11

The above statement will cause the renderer to find procedural DSO’s by first looking
in /usr/local/bmrt, then in a directory that is dependent on the architecture, then
wherever the default (or previously set) path indicated.

2.2.2 Drawing Options

Option "limits" "curvethinning" [frequency]
Option "limits" "curvethinthreshold" [thresh]

When rgl draws many Curves primitives, it can turn into a big unshaded
mess. It may be that you decide that drawing fewer curves actually makes
a more understandable preview. The "curvethinning" frequency value tells
how often a curve should be drawn: a value of 2 indicates to draw every other
curve, a value of 100 means that only every 100th curve should be drawn.
Furthermore, this thinning is only performed for Curves statements that have
more individual hairs than is specified with the "curvethinthreshold" pa-
rameter. Both take integer arguments. If the "curvethinning" frequency is
set to zero, no curve thinning will take place at all.

Attribute "division" "udivisions" [nu]
Attribute "division" "vdivisions" [nv]

rgl will dice curved primitives into flat polygons for OpenGL to draw. It basi-
cally guesses at how many polygons to subdivide into, and it usually chooses
well enough for previews, but sometimes you may want to override the dicing
criteria. This option allows you to explicitly specify how many subdivisions
to make in subsequently curved surfaces. The arguments nu and nv are both
integers.

2.3 Limitations of rgl

Since rgl is an OpenGL-based polygon previewer, it cannot possibly support all the
features that would be supported by other types of renders. This section outlines
the features which are not fully supported by rgl.

• The following commands are ignored because they have no real meaning in an
OpenGL previewer: ColorSamples, DepthOfField, Shutter, PixelVariance,
PixelSamples, PixelFilter, Exposure, Imager, Quantize, Hider, Atmosphere,
Bound, Opacity, TextureCoordinates, ShadingRate, ShadingInterpolation,
Matte.

• The LightSource directive works as expected for "ambientlight", "distantlight"
and "pointlight". It isn’t smart enough to know exactly what to do for cus-
tom light source shaders, but it will try to make its best guess by examining the
parameters to the shader, looking for clues like "from", "to", "lightcolor",
and so on. The AreaLightSource directive has no effect.

12

• Shaders do nothing. All surfaces are displayed as if they were using the stan-
dard matte.sl shader.

• When motion blocks are given, only the first time key is used.

• Multiple levels of detail are not supported.

• Solids are all displayed as unions, i.e., all of the components of a CSG primitive
are displayed.

• Object instancing is not currently working. Instanced objects are ignored.

• Texture map generation functions (e.g., MakeTexture) do nothing in rgl.

2.4 Odds and Ends

There are a bunch of other things you should know about rgl but we couldn’t figure
out where they should go in the manual. In no particular order:

• Before rendering any file specified on the command line or commands piped to
it, rgl will first read the contents of the file $BMRTHOME/.rendribrc. If there is
no environment variable named $BMRTHOME, then the file $HOME/.rendribrc
is read instead. In either case, by putting commands in one of these places,
you can set various options for rgl before any other file is read.

13

Chapter 3

Photo-realistic rendering with
rendrib

The rendrib program is a high-quality renderer incorporating the techniques of ray
tracing and radiosity to make (potentially) very realistic images. This renderer
supports ray tracing, global illumination, solid modeling, area light sources, texture
mapping, environment mapping, displacements, volume and imager shading, and
programmable shading.

The format for invoking rendrib is as follows:

rendrib [options] myfile.rib

Usually, this will result in one or more TIFF image files to be written to disk.
If the file specified framebuffer display (as opposed to file), or you override with the
-d flag, the resulting image will be displayed as a window on your screen. When
the rendering is complete, rendrib will pause. Hitting the ESC key will terminate.
Alternately, if you hit the ‘w’ key, the image in the window will be written to a file
(using the filename specified in the file’s Display command).

If no filename is specified to rendrib, it will attempt to read commands from
standard input (stdin). This allows you to pipe output of another program directly
to rendrib. For example, suppose that myprog dumps RIB to its standard output.
Then you could display frames from myprog as they are being generated with the
following command:

myprog | rendrib

The file which you specify may contain either a single frame or multiple frames
(if it is an animation sequence).

3.1 Command Line Options

The following subsection details command line options alter the way in which rendrib
creates and/or displays images.

14

3.1.1 Image Display Options

-d [interleave]

By default, any fully rendered frames are sent to a TIFF image file (unless,
of course, the file specifies framebuffer output with the Display directive).
The -d command line option overrides file output and forces output to be sent
to a screen window. If the optional integer interleave is specified, scanlines
will be computed in an interleaved fashion, giving you a kind of progressive
refinement display. For example,

rendrib -d 8 myfile.rib

will display every 8th scanline first (making a very quick, but blocky image),
then compute every 4th scanline, then every 2nd, and so on, until you get the
final image. This is extremely useful if you want to quickly see a rough version
of the scene.

-res xres yres

Sets the resolution of the output image. Note that if the file contains a Format
statement which explicitly specifies the image resolution, then the -res option
will be ignored and the window will be opened with the resolution specified in
the Format statement.

-pos xpos ypos

Specifies the position of the window on your display (obviously, this only works
if used in combination with the -d option or if your Display command in your
file specifies framebuffer output).

-crop xmin xmax ymin ymax

Specify that only a portion of the whole image should be rendered. The mean-
ing of this command line switch is precisely the same as if the CropWindow di-
rective was in your file (and like the other options of this section, a CropWindow
option takes precedence over any command line arguments).

-samples xsamp ysamp

Sets the number of samples per pixel to xsamp (horizontal) by ysamp (verti-
cal). Note that if the file contains a PixelSamples statement which explicitly
specifies the sampling rate, then the -samples option will be ignored and the
sampling rate will be as specified by the PixelSamples statement.

15

3.1.2 Status Output

-stats

Upon completion of rendering, output various statistics about memory and
time usage, number of primitives, and all sorts of other debugging informa-
tion. Using this option on the command line is equivalent to putting Option
"statistics" "endofframe" [1] in your file.

-v

Verbose output — this prints more status messages as rendering progresses,
such as the names of shaders and textures as they are loaded.

You can combine the -v and -stats options if you want.

3.1.3 Radiosity

-radio steps

By default, rendrib calculates images using the rendering technique of ray
tracing. Ray tracing alone does no energy balancing of the scene. In other
words, it does not account for interreflected light. However, rendrib supports
radiosity, which is a method for performing these calculations. You can in-
struct rendrib to perform a radiosity pass prior to the ray tracing by using the
-radio command line switch. This command is followed by a single integer
argument, which is the number of radiosity steps to perform. For example,
the following command causes rendrib to perform 50 radiosity steps prior to
forming its image:

rendrib -radio 50 myfile.rib

If the energy is balanced in fewer steps than you specify, rendrib will skip the
remaining steps (saving time). Depending on your scene, the radiosity calcu-
lations can take a long time, but they are independent of the final resolution
of your image.

Specifying the number of radiosity steps on the command line is exactly equiv-
alent to including a Option "radiosity" "nsteps" line in your file.

-rsamples samps

By default, rendrib calculates the visibility between geometric elements by
casting a minimum of one ray between the two elements. You can increase
this number to get better accuracy (but at a big decrease in speed) by using
the -rsamples option. This option takes a single integer argument. The
minimum number of rays used to determine visibility will be the square of this
argument. For example, the following command will perform a radiosity pass
of 100 steps, using a minimum of 4 sample rays per visibility calculation:

rendrib -radio 100 -rsamples 2 myfile.rib

16

3.1.4 Miscellaneous Options

-frames first last

Sometimes you may only want to render a subset of frames from a multi-frame
file. You can do this by using the -frames command line option. This option
takes two integer arguments: the first and last frame numbers to display. For
example,

rendrib -frames 10 10 myfile.rib

This example will render only frame number 10 from this file. If you are
going to use this option, it is recommended that your frames be numbered
sequentially starting with 0 or 1.

-safe

When you submit a scene file for rendering, the image files will have filenames
as specified in the file with the Display directive. If a file already exists
with the same name, the original file will be overwritten with the new image.
Sometimes you may want to avoid this. Using the -safe command line option
will abort rendering of any frame which would overwrite an existing disk file.
This is mostly useful if you are rendering many frames in a sequence, and do
not want to overwrite any frames already rendered. Here is an example:

rendrib -safe -frames 100 200 myfile.rib

This example will render a block of 100 frames from the myfile.rib, but will
skip over any frames which happen to already have been rendered.

-ascii

Will produce an ASCII (yes, exactly what you think) representation of your
scene to the terminal window!

-beep

Rings the terminal bell upon completion of rendering.

-arch

Just print out the architecture name (e.g., sgi m3, linux, etc.).

3.2 Implementation-dependent Options and Attributes

Various implementation-specific behaviors of a renderer can be set using two com-
mands: Option and Attribute. Options apply to the entire scene and should be
specified prior to WorldBegin. Attributes apply to specific geometry, are generally
set after the WorldBegin statement, and bind to subsequent geometry.

Several of the features of this renderer can be controlled as nonstandard options.
The mechanism for this is to use the Option command. The syntax for this is:

17

Option name params

Where name is the option name, and params is a list of token/value pairs which
correspond to this option. Remember that options apply to an entire rendered
frame, while attributes apply to specific pieces of geometry.

Similarly, other renderer features can be controlled as nonstandard attributes,
with the following syntax:

Attribute name params

Attributes apply to specific pieces of geometry, and are saved and restored by
the AttributeBegin and AttributeEnd commands.

Remember that both of BMRT’s renderers (rendrib and rgl) read from a file
called .rendribrc both in the local directory where it is run, and also in your home
directory. This file can be plain RIB, which means that if you want to set any
defaults of the options discussed below, you can just put the Option or Attribute
lines in this file in your home directory.

The remainder of this chapter explain the various nonstandard options and at-
tributes supported by rendrib. In most cases, the new “inline declaration” syntax
is used to clarify the expected data types, and the default values are provided as
examples.

3.2.1 Rendering Options

Option "render" "integer max raylevel" [4]

Sets the maximum number of recursive rays that will be cast between reflectors
and refractors. This has no effect if there are no truly reflective or refractive
objects in the scene (in other words, shaders which use the trace function).

Option "render" "float minshadowbias" [0.01]

Sets the minimum distance that one object has to be in order to shadow
another object. This keeps objects from self-shadowing themselves. If there
are serious problems with self-shadowing, this number can be increased. You
may need to decrease this number if the scale of your objects is such that
0.01 is on the order of the size of your objects. In general, however, you
will probably never need to use this option if you don’t notice self-shadowing
artifacts in your images.

Option "statistics" "integer endofframe" [0]

When nonzero, this option will cause rendrib to print out various statistics
about the rendering process. Greater values print more detailed data: 1 just
prints time and memory information, 2 gives more detail, 3 is all the data that
the renderer ever wants to print. (Usually 2 is just fine for lots of data.)

Option "statistics" "string filename" [""]

When non-null, this option will cause rendrib’s statistics to be echoed to the
given filename, rather than printed to stdout.

18

3.2.2 Search Paths

Various external files may be needed as the renderer is running, and unless they
are specified as fully-qualified file paths, the renderer will need to search through
directories to find those files. There exists an option to set the lists of directories in
which to search for these files.

Option "searchpath" "archive" [pathlist]
Option "searchpath" "texture" [pathlist]
Option "searchpath" "shader" [pathlist]
Option "searchpath" "procedural" [pathlist]
Option "searchpath" "display" [pathlist]

Sets the search path that the renderer will use for files that are needed at
runtime.

The different search paths recognized by rendrib are:

archive files included by ReadArchive.

texture texture image files.

shader compiled shaders.

procedural DSO’s and executables for Procedural calls.

display DSO’s for custom display services.

Search path types in BMRT are specified as colon-separated lists of directory
names (much like an execution path for shell commands). There are two special
strings that have special meaning in BMRT’s search paths:

• & is replaced with the previous search path (i.e., what was the search path
before this statement).

• $ARCH is replaced with the name of the machine architecture (such as linux,
sgi m3, etc.). This allows you to keep compiled software (like DSO’s) for
different platforms in different directories, without having to hard-code the
platform name into your file.

For example, you may set your procedural path as follows:

Option "searchpath" "procedural"
["/usr/local/bmrt:/usr/local/bmrt/$ARCH:&"]

The above statement will cause the renderer to find procedural DSO’s by first looking
in /usr/local/bmrt, then in a directory that is dependent on the architecture, then
wherever the default (or previously set) path indicated.

19

3.2.3 Visibility of Primitives

Attribute "render" "integer visibility" [7]

Controls which rays may see an object. The integer parameter is the sum of:

1 The object is visibile from primary (camera) rays.

2 The object is visibile from reflection rays.

4 The object is visibile from shadow rays.

This attribute is useful for certain special effects, such as having an object
which appears only in the reflections of other objects, but is not visible when
the camera looks at it. Or an object which only casts shadows, but is not in
reflections or is not seen from the camera.

Attribute "render" "string casts shadows" ["Os"]

Controls how surfaces shadow other surfaces. Possible values for shadowval
are shown below, in order of increasing computational cost:

"none" The surface will not cast shadows on any other surface, therefore
it may be ignored completely for shadow computations.

"opaque" The surface will completely shadow any object which it oc-
cludes. In other words, this tells the renderer to treat this object as
completely opaque.

"Os" The surface may partially shadow, depending on the value set by
the Opacity directive. In other words, it has a constant opacity across
the surface. (This is the default.)

"shade" The surface may have a complex opacity pattern, therefore its
surface shader should be called on a point-by-point basis to determine its
opacity for shadow computations.

The default value is "Os". You can optimize rendering time by making sur-
faces known to be opaque "opaque", and surfaces known not to shadow other
surfaces "none". It is important, however, to use "shade" for any surfaces
whose shaders modify the opacity of the surface in any patterned way.

3.2.4 Displacement and Subdivision Attributes

Attribute "render" "integer truedisplacement" [0]

If the argument is nonzero, subsequent primitives will truly be diced and dis-
placed using their displacement shader (if any). If the value of 0 is used,
bump mapping will be used rather than true displacement. Only a displace-
ment shader can move the diced geometry – altering P in a surface shader will
not move the surface, only the normals. Using a displacement shader without
this attribute also only results in the normals being modified, but not the

20

surface. Be sure to set displacement bounds if you displace! Please see the
section on “limitations of rendrib” for details on the limitations placed on true
displacements.

Attribute "displacementbound" "string coordinatesystem" ["current"]
"float sphere" [0]

For truly displaced surfaces, specifies the amount that its bounding box should
grow to account for the displacement. The box is grown in all directions by
the radius argument, expressed in the given coordinate system (a string).

Attribute "render" "float patch multiplier" [1.0]

Takes an float argument giving a multiplier for the dicing rate that BMRT
computes for displaced surfaces and for certain curved surfaces which are sub-
divided. Smaller values will make the scene render faster and using less mem-
ory, but may produce a more faceted appearance to certain curved surfaces.
Larger values will make more accurate surfaces, but will take longer and more
memory to render. The default is probably just right for 99% of scenes, but
occasionally you may need to tweak this.

Attribute "render" "float patch maxlevel" [256]
Attribute "render" "float patch minlevel" [1]

Takes an integer argument giving the maximum (or minimum) subdivision
level for bicubic and NURBS patches. These patches are subdivided based on
the screen size of the patch and their curvature. This attribute will split the
patches into at least (minlevel x minlevel) and at most (maxlevel x maxlevel)
subpatches. The default is min=1, max=256. In general, you shouldn’t ever
need to change this, but occasionally you may need to set a specific subdivision
rate for some reason.

3.2.5 Object Appearance

Attribute "trimcurve" "string sense" ["inside"]

By default, trim curves on NURBS will make the portions of the surface that
are inside the closed curve. You can reverse this property (by keeping the
inside of the curve and throwing out the part of the surface outside the curve)
by setting the trimcurve sense to "outside".

Attribute "render" "integer use shadingrate" [1]

When non-zero (the default), rendrib will attempt to share shaded colors
among nearby screen rays that strike the same object (specifically, it shares
among rays that are within the screen space area defined by the ShadingRate).
Occasionally, you may see a blocky or noisy appearance resulting from this
shared computation. In such a case, setting this attribute to 0 will cause sub-
sequent primitives to compute their shading for every screen ray, resulting in
much more accurate color (though at a higher cost).

21

3.2.6 Light Source Attributes

Attribute "light" "string shadows" ["off"]

Turns the automatic ray cast shadow calculations on or off on a light-by-light
basis. This attribute can be used for any LightSource or AreaLightSource
which is declared. For example, the following RIB fragment declares a point
light source which casts shadows:

Attribute "light" "shadows" ["on"]
LightSource "pointlight" 1 "from" [0 10 0]

Attribute "light" "integer nsamples" [1]

Sets the number of times to sample a particular light source for each shading
calculation. This is only useful for an area light which is being undersampled
— i.e., its soft shadows are too noisy. By increasing the number of samples, you
can reduce the noise by increasing sampling of this one light, independently
of overall PixelSamples.

3.2.7 Finite Element Radiosity Controls

If you are using finite element radiosity (one of the two global illumination methods
supported by BMRT), there are some additional options that you can set.

Option "radiosity" "integer steps" [0]

In addition to using the -radio command line option to rendrib, you can
specify the number of radiosity steps with this option. Setting steps to 0
indicates that radiosity should not be used. Nonzero indicates that radiosity
should be used (with the given number of steps) even if the -radio command
line switch is not given to rendrib.

Option "radiosity" "integer minpatchsamples" [1]

Just like the -rsamples command line option to rendrib, this option lets you
set the minimum number of samples per patch to determine radiosity form
factors. Actually, the minimum total number of samples per patch is this
number squared (since it is this number in each direction). In some cases, the
render will decide to use more samples, but this is the minimum.

A number of attributes control specific features of the radiosity computations
on a per-primitive basis. These attributes have absolutely no effect if you are not
performing radiosity calculations.

Attribute "radiosity" "color averagecolor" [color]

By default, the radiosity renderer assumes that the diffuse reflectivity of a
surface is the default color value (set by Color) times the Kd value sent to
the shader for that surface. For the lighting calculations to be accurate, the

22

reflective color should be the average color of the patch. For surfaces with a
solid color, this is fine. However, some surface shaders create surfaces whose
average colors have nothing to do with the color set by the Color directive. In
this case, you should explicitly set the average color using the attribute above.
You may have to guess what the average color is for a particular surface.

Attribute "radiosity" "color emissioncolor" [color]

All surfaces which are not light sources (Lightsource or AreaLightsource) are
assumed to be reflectors only (i.e. they do not glow). If you want a piece
of geometry to actually emit radiative energy into the environment, you can
either declare it as an AreaLightSource, or you could declare it as regular
geometry but give it an emission color (see above). The tradeoffs are discussed
further in the radiosity section of this chapter.

Attribute "radiosity" "float patchsize" [4]
Attribute "radiosity" "float elemsize" [2]
Attribute "radiosity" "float minsize" [1]

This attribute tells rendrib how finely to mesh the environment for radiosity
calculations. The statement above instructs to chop all geometry into patches
no larger than 4 units on a side. Each patch is then diced into elements no
larger than 2 units on a side. As a result of analyzing the radiosity gradients,
elements may be diced even finer, but a particular element will not be diced
if its longest edge is shorter than 1 unit. The smaller these numbers, the
longer the radiosity calculation will take (but it will be more accurate). This
attribute can be used to set these numbers on a surface-by-surface basis (i.e.,
different surfaces in the scene may have different dicing rates). The values are
measured in the current (i.e., local) coordinate system in effect at the time of
this Attribute statement. NOTE: The default values are probably bad
— if you are using radiosity, you should set these to appropriate
sizes for your particular scene.

Attribute "radiosity" "string zonal" ["fully zonal"]

This attribute controls which radiosity calculations are performed on surfaces.
This can be set on a surface-by-surface basis. Possible values are shown below,
in order of increasing computational cost:

"none" The surface will neither shoot or receive energy, i.e. it will be
ignored by the radiosity calculation.

"zonal receives" The surface receives radiant energy, but does not
shoot it back into the environment.

"zonal shoots" The surface reflects (or emits) energy, but does not re-
ceive energy from other patches.

"fully zonal" The surfaces both receives and shoots energy. This is the
default zonal property of materials.

23

3.2.8 Monte Carlo Global Illumination Controls

In addition to finite element radiosity, whose options are described in the previous
subsection, BMRT also supports Monte Carlo-based global illumination calculations.
There are a few options related to this technique. Many of the options are related
to the fact that it’s ridiculously expensive to recompute the indirect illumination at
every pixel. So it’s only done periodically, and results from the sparse sampling are
interpolated or extrapolated. Many options relate to how often it’s done. Most of
the settings are attributes so that they can be varied on a per-object basis. They
are shown here with their default values as examples:

Attribute "indirect" "float maxerror" [0.25]

A maximum error metric. Smaller numbers cause recomputation to happen
more often. Larger numbers render faster, but you will see artifacts in the form
of obvious ”splotches” in the neighborhood of each sample. Values between
0.1-0.25 work reasonably well, but you should experiment. But in any case,
this is a fairly straightforward time/quality knob.

Attribute "indirect" "float maxpixeldist" [20]

Forces recomputation based roughly on (raster space) distance. The above
line basically says to recompute the indirect illumination when no previous
sample is within roughly 20 pixels, even if the estimated error is below the
allowable maxerror threshold.

Attribute "indirect" "integer nsamples" [256]

How many rays to cast in order to estimate irradiance, when generating new
samples. Larger is less noise, but more time. Should be obvious how this is
used. Use as low a number as you can stand the appearance, as rendering
time is directly proportional to this.

There are also two options that make it possible to store and re-use indirect
lighting computations from previous renderings.

Option "indirect" "string savefile" ["indirect.dat"]

If you specify this option, when rendering is done the contents of the irradiance
data cache will be written out to disk in a file with the name you specify. This
is useful mainly if the next time you render the scene, you use the following
option:

Option "indirect" "string seedfile" ["indirect.dat"]

This option causes the irradiance data cache to start out with all the irradiance
data in the file specified. Without this, it starts with nothing and must sample
for all values it needs. If you read a data file to start with, it will still sample
for points that aren’t sufficiently close or have too much error. But it can
greatly save computation by using the samples that were computed and saved
from the prior run.

24

3.2.9 Options for Photon Mapping for Caustics

Attribute "caustic" "float maxpixeldist" [16]

Limits the distance (in raster space) over which it will consider caustic infor-
mation. The larger this number, the fewer total photons will need to be traced,
which results in your caustics being calculated faster. The appearance of the
caustics will also be smoother. If the maxpixeldist is too large, the caustics
will appear too blurry. As the number gets smaller, your caustics will be more
finely focused, but may get noisy if you don’t use enough total photons.

Attribute "caustic" "integer ngather" [75]

Sets the minimum number of photons to gather in order to estimate the caustic
at a point. Increasing this number will give a more accurate caustic, but will
be more expensive.

There’s also an attribute that can be set per light, to indicate how many photons
to trace in order to calculate caustics:

Attribute "light" "integer nphotons" [0]

Sets the number of photons to shoot from this light source in order to calculate
caustics. The default is 0, which means that the light does not try to calculate
caustic paths. Any nonzero number will turn caustics on for that light, and
higher numbers result in more accurate images (but more expensive render
times). A good guess to start might be 50,000 photons per light source.

The algorithm for caustics doesn’t understand shaders particularly well, so it’s
important to give it a few hints about which objects actually specularly reflect or
refract lights. These are controlled by the following attributes:

Attribute "caustic" "color specularcolor" [0 0 0]

Sets the reflective specularity of subsequent primitives. The default is [0 0 0],
which means that the object is not specularly reflective (for the purpose of cal-
culating caustics; it can, of course, still look shiny depending on its surface
shader).

Attribute "caustic" "color refractioncolor" [0 0 0]
Attribute "caustic" "float refractionindex" [1]

Sets the refractive specularity and index of refraction for subsequent primi-
tives. The default for refractioncolor is [0 0 0], which means that the
object is not specularly refractive at all (for the purpose of calculating caus-
tics; it can, of course, still look like it refracts light depending on its surface
shader).

25

3.2.10 Other Options

Option "limits" "integer texturememory" [1000]

Sets the texture cache size, measured in Kbytes. The renderer will try to keep
no more than this amount of memory tied up with textures. Setting it low
keeps memory consumption down if you use many textures. But setting it too
low may cause thrashing if it just can’t keep enough in cache. The default
is 1000 (i.e., 1 Mbyte). The texture cache is only used for tiled textures, i.e.
those made with the mkmip program. For regular scanline TIFF files, texture
memory can grow very large.

Option "limits" "integer geommemory" [unlimited]

Analogous to the texturememory option, this sets a limit to the amount of
memory used to hold the diced pieces of NURBS, bicubics, and displaced
geometry. It is an integer, giving a measurement in Kbytes. The default is un-
limited, but setting this to something smaller (like 100000, or 100 Mbytes) can
keep your memory consumption down for large scenes, but setting it too low
may cause you to continually be throwing out and regenerating your NURBS
or displaced surfaces.

Option "limits" "integer derivmemory" [2]

A certain amount of memory is needed to allow rendrib’s Shading Language
interpreter to correctly compute derivatives. Very occasionally, you may need
to increase this number (generally only if you have absolutely humongous
shaders with many texture or other derivative calls). The default is 2 (i.e.,
2 Kbytes), which is almost always adequate. If your frames are not crashing
mysteriously in the shaders, don’t screw with this number!

Option "runtime" "string verbosity" ["normal"]

This option controls the same output as the -v and -stats command line
options. The verb parameter is a string which controls the level of verbosity.
Possible values, in order of increasing output detail, are: "silent", "normal",
"stats", "debug".

3.3 Extra Ray Tracing Features

The default rendering method used by BMRT is ray tracing. Of course, if you only
use standard surfaces and light sources, the results will not be very dramatic. But
you can also write shaders that cast reflection and refraction rays. Light sources
which cast ray-traced shadows can be added automatically, even from area light
sources.

This section describes the Shading Language functions that provide extra sup-
port for ray tracing.

color trace (point from, vector dir)

26

Traces a ray from position from in the direction of vector dir. The return
value is the incoming light from that direction.

color visibility (point p1, p2)

Forces a visibility (shadow) check between two arbitrary points, retuning the
spectral visibility between them. If there is no geometry between the two
points, the return value will be (1,1,1). If fully opaque geometry is between
the two points, the return value will be (0,0,0). Partially opaque occluders
will result in the return of a partial transmission value.

An example use of this function would be to make an explicit shadow check
in a light source shader, rather than to mark lights as casting shadows in the
RIB stream (as described in the previous section on nonstandard attributes).
For example:

light
shadowpointlight (float intensity = 1;

color lightcolor = 1;
point from = point "shader" (0,0,0);

float raytraceshadow = 1;)
{

illuminate (from) {
Cl = intensity * lightcolor / (L . L);
if (raytraceshadow != 0)

Cl *= visibility (Ps, from);
}

}

float rayhittest (point from, vector dir,
output point Ph, output vector Nh)

Probes geometry from point from looking in direction dir. If no geometry is
hit by the ray probe, the return value will be very large (1e38). If geometry is
encountered, the position and normal of the geometry hit will be stored in Ph
and Nh, respectively, and the return value will be the distance to the geometry.

float fulltrace (point pos, vector dir,
output color hitcolor, output float hitdist,
output point Phit, output vector Nhit,
output point Pmiss, output point Rmiss)

Traces a ray from pos in the direction dir.

If any object is hit by the ray, then hitdist will be set to the distance of the
nearest object hit by the ray, Phit and Nhit will be set to the position and
surface normal of that nearest object at the intersection point, and hitcolor
will be set to the light color arriving from the ray (just like the return value
of trace).

27

If no object is hit by the ray, then hitdist will be set to 1.0e30, hitcolor will
bet set to (0,0,0).

In either case, in the course of tracing, if any ray (including subsequent rays
traced through glass, for example) ever misses all objects entirely, then Pmiss
and Rmiss will be set to the position and direction of the deepest ray that
failed to hit any objects, and the return value of this function will be the
depth of the ray which missed. If no ray misses (i.e. some ray eventually hits
a nonreflective, nonrefractive object), then the return value of this function
will be zero. An example use of this functionality would be to combine ray
tracing of near objects with an environment map of far objects.

The code fragment below traces a ray (for example, through glass). If the
ray emerging from the far side of the glass misses all objects, it adds in a
contribution from an environment map, scaled such that the more layers of
glass it went through, the dimmer it will be.

missdepth = fulltrace (P, R, C, d, Ph, Nh, Pm, Rm);
if (missdepth > 0)

C += environment ("foo.env", Rm) / missdepth;

float isshadowray ()

Returns 1 if this shader is being executed in order to evaluate the transparency
of a surface for the purpose of a shadow ray. If the shader is instead being
evaluated for visible appearance, this function will return 0. This function can
be used to alter the behavior of a shader so that it does one thing in the case
of visibility rays, something else in the case of shadow rays.

float raylevel ()

Returns the level of the ray which caused this shader to be executed. A
return value of 0 indicates that this shader is being executed on a camera
(eye) ray, 1 that it is the result of a single reflection or refraction, etc. This
allows one to customize the behavior of a shader based on how “deep” in the
reflection/refraction tree.

3.4 Indirect Illumination

Ray tracing will determine illumination only via direct paths from light sources to
surfaces being shaded. No knowledge of indirect illumination, or interreflection be-
tween objects, is available to the ray tracer. This kind of illumination is responsible
for effects such as indirect lighting, soft shadows, and color bleeding. BMRT actu-
ally has two different algorithms for computing these kinds of global illumination
effects: finite element radiosity, and Monte Carlo irradiance calculations.

Finite element radiosity subdivides all of your geometric primitives into patches,
then subdivides the patches into “elements.” In a series of progressive steps, the

28

patch with the most energy “shoots” its energy at all of the vertices of all of the
elements. This distributes the energy around the scene. The more steps you run,
and the smaller your patches and elements are, the more accurate your image will
be (but the longer it will take to render). The radiosity steps are all computed up
front, before the first pixel is actually rendered.

Finite element radiosity has some big drawbacks, almost all of which are related
to the fact that it has to pre-mesh the entire scene. First, it gets inaccuracies when-
ever you use CSG, or have trim curves on your NURBS patches. It can use lots
of time and memory when you have many geometric primitives, especially if your
objects are made out of lots of little polygons or subdivision meshes. If you use
procedural primitives, the renderer will have to expand them all right at the begin-
ning, in order to mesh them. Overall, FE radiosity just doesn’t scale particularly
well with large scenes.

The newer Monte Carlo irradiance approach has a different set of tradeoffs.
Rather than enmeshing the scene and solving the light transport up front, the MC
approach is “pay as you go.” As it’s rendering, when it needs information about
indirect illumination, it will do a bunch of extra ray tracing to figure out the irradi-
ance. It will save those irradiance values, and try to reuse them for nearby points.
The MC approach works just fine with CSG and trim curves. It doesn’t unpack
procedural primitives until they are really needed. It takes longer than FE radiosity
for small scenes, but it scales better and should be cheaper for large scenes. As this
technique continues to be improved in BMRT, we will probably phase out the FE
radiosity.

3.4.1 Using Finite Element Radiosity

To render the scene using radiosity, just type:

rendrib -radio n myfile.rib

The parameter n is a number giving the maximum number of radiosity steps
to perform. A typical number might be 50. Higher values of n will yield more
accurate illumination solutions, but will also take much longer to compute. If the
solution to the illumination equations converges in fewer steps, the program will
simply terminate early, and not perform the additional steps.

Alternately, you could just use Attribute "radiosity" "nsteps" as described
in the previous section.

When using radiosity, there are a few more things you need to do:

• You should set the meshing rates for the patches and elements. See “patch-
size,” “elemsize,” and “minsize” in the “radiosity attributes” section of this
document.

• For any nonobvious surfaces, you need to give the average diffuse reflectivity.
(Obvious means that the average diffuse reflectivity is the same as the color
set by the Color directive.) See the “nonstandard attributes” section of this

29

document for details on setting the average and emissive colors for surfaces.
The renderer is smart enough to query shaders for their “Kd” values, so there
is no need to premultiply the average color by Kd. However, that’s about as
smart as it gets, so don’t expect any tricks done by the surface shader to be
somehow divined by the radiosity engine. Any texture mapped objects must
also have their average color declared in order to specify the average color of
the texture map.

When rendering with radiosity, there are two ways to make area light sources.
One way is to use the AreaLightSource directive, explicitly making area light
sources. The second way is to declare regular geometry, but setting an emission
color:

Attribute "radiosity" "emissioncolor" [color]

The difference is subtle. Both ways will make these patches shoot light into their
environment. However, only the geometry declared with AreaLightSource will be
resampled again on the second pass. This results in more accurate shadows and
nicer illumination, but at the expense of much longer rendering time on the second
pass.

3.4.2 Using Monte Carlo Irradiance

To use the Monte Carlo irradiance calculations for global illumination, you need to
follow a different set of steps.

1. Don’t use any of the radiosity options or the -radio flag. The old radiosity
and the new irradiance stuff are not meant to be used together.

2. Add a light source to the scene using the "indirect" light shader, which is in
the shaders directory of BMRT. This light is built into BMRT, so the shader
will not actually be accessed. If there are any objects that you specifically do
not want indirect illumination to fall on, you can just use Illuminate to turn
the light off, and subsequent surfaces won’t get indirect illumination.

3. There are several options that control the behavior of the computations. See
section 3.2.8 for their description. You may need to adjust several of them on
a per-shot basis, based on time/memory/quality tradeoffs.

There are a few limitations with the irradiance calculations that you should be
aware of:

• Right now, it only works for front lit objects, and assumes that you’re inter-
ested in the side with the outward-pointing normal. Translucent surfaces will
be okay eventually, but for now they’re not operational.

• No volumes yet.

30

• If you compare simple scenes with the old-style BMRT radiosity, you’ll find
that the radiosity is much faster than the new method. However, for large
scenes the new method will most likely win out. Furthermore, the new method
can also be used with the ray server, unlike the old.

You shouldn’t use the "seedfile" option if the objects have moved around.
But if the objects are static, either because you have only moved the camera, or
because you are rerendering the same frame, the combination of "seedfile" and
"savefile" can tremendously speed up computation.

Here’s another way they can be used. Say you can’t afford to set the other
quality options as nice as you would like, because it would take too long to render
each frame. So you could render the environment from several typical viewpoints,
with only the static objects, and save all the results to a single shared seed file.
Then for main frames, always read this seed file (but don’t save!) and most of the
sampling is already done for you, though it will redo sampling on the objects that
move around. Does this make sense?

You can also use the Monte Carlo irradiance global illumination in ray server
mode, to serve global illumination to PRMan. If you look at indirect.sl (which
is only used on the PRMan side — the light is built into BMRT), you’ll see that
the light shader simply makes a call to rayserver indirect, and then stashes
the results into Cl so that it looks like an ordinary light, and hence it will work
with any existing surface shaders without modifications. Don’t forget to compile
indirect.sl for PRMan. Note that PRMan doesn’t know anything about the
indirect options, so you’ll see warnings about them. This is perfectly harmless.

3.5 Caustics

BMRT also has the option of computing caustics, which (to mangle the true meaning
just a bit) refers to light that reflects or refracts from specular objects to focus on
other objects. To compute caustics, you must follow these steps:

1. Declare a magic light source with the "caustic" shader (like "indirect",
it’s built into BMRT rather than being an actual shader). You should use
RiIlluminate to turn the caustic light on for objects that receive caustics,
and turn it off for objects that are known to not receive caustics. Illuminating
just the objects that are known to receive caustics can save lots of rendering
time.

2. For any light sources that should reflect or refract from specular object, thereby
causing caustics, you will need to set the number of photons with:

Attribute "light" "integer nphotons"

This sets the number of photons to shoot from this light source in order to
calculate caustics. The default is 0, which means that the light does not try
to calculate caustic paths. Any nonzero number will turn caustics on for that

31

light, and higher numbers result in more accurate images (but more expensive
render times).

3. The algorithm for caustics doesn’t understand shaders particularly well, so
it’s important to give it a few hints about which objects actually specu-
larly reflect or refract lights. This is done with Attribute "radiosity"
"specularcolor", Attribute "radiosity" "refractioncolor", Attribute
"radiosity" "refractionindex", See section 3.2.9 for details.

4. Finally, you may want to adjust several global options that control basic
time/quality tradeoffs. These are also described in section 3.2.9.

3.6 Optimizing Rendering Time

Please note that rendering full color frames can take a really long time! High quality
rendering, especially ray tracing, is notoriously slow. Try a couple test frames first,
to make sure you have everything right before you compute many frames. Multiply
the time it takes for each frame by the total number of frames you need. If your
total rendering time is prohibitive (say, 5 months), you’d better change something!

Don’t bother praying or panicking: we have it on good authority that neither
does much to increase rendering throughput. Some optimization hints are listed
below. Obvious, effective, easy optimizations are listed first. Trickier or subtler
optimizations are listed last.

1. Resolution

Use low resolution when you can. You may want to do test frames at 320 x
240 resolution or lower. Remember that video resolution is only about 640 x
480 pixels. It’s pointless to render at higher resolution if you intend to record
onto videotape, since any higher resolution will be lost in the scan conversion.
Even film can be done at very high quality with about 2048 pixels wide, so
don’t go wasting time with 4k renders.

2. Pixel Sampling Rate and Antialiasing

Try to specify only 1 sample per pixel for test frames. You can sometimes
get away with one sample per pixel for final video frames, too. However, to
get really good looking frames you probably need to do higher sampling for
antialiasing. There are several sources of aliasing: geometric edges, motion
blur, area light shadows, depth of field effects, reflections/refractions, and
texture patterns.

Usually, 2x2 sampling is perfectly adequate to antialias geometric edges for
video images. Higher than 3x3 does not usually give noticeable improvements
for geometric edges, but you may require even more samples to reduce noise
from motion blur and depth of field. There’s not much you can do about that
if you must using these effects.

32

You should prefer using Attribute "light" "nsamples" to increase sam-
pling of area lights, rather than increasing PixelSamples. Similarly, if the
source of your aliasing is blurry reflections or refractions from shaders which
use the trace() function, you should consult the documentation for those
shaders — many give the option of firing many distributed ray samples, rather
than being forced to increase the screen space sampling rate.

Higher sampling rates should never be used to eliminate aliasing in shaders.
Well written shaders should be smart enough to analytically antialias them-
selves by frequency clamping or other trickery. It’s considered bad style to
write shaders which alias badly enough to require high sampling at the image
level.

3. Geometric Representation

Keep your geometry simple, and use curved surface primitives instead of lots
of polygons whenever possible. Try writing surface or displacement shaders to
add detail to surfaces. It’s generally faster to fake the appearance of complexity
than it is to create objects with real geometric complexity. Try to make
your images interesting through the use of complex textures used on relatively
simple geometry.

4. Lights and Shadows

Shadows are important visual cues, but you must use them wisely. Shadowed
light sources can really increase rendering time. Only cast shadows from light
sources that really need them. If you have several light sources in a scene,
you may be able to get away with having only the brightest one cast shadows.
Nobody may know the difference!

Similarly, most objects can be treated as completely opaque (this assump-
tion speeds rendering time). Some objects do not need to cast shadows at
all (for example, floors or walls in a room). See the “nonstandard options
and attributes” section of this chapter for information on giving the renderer
shadowing hints.

5. Shading Models

Keep your shading models simple. Complex procedural textures (such as wood
or marble) take much more time to compute than plastic. On the other hand,
it is much cheaper to use custom surface or displacement shaders to make
surfaces look complex than it is to actually use complex geometry.

Distribution of rays results in noise. The fewer samples per pixel, the higher
the noise. So if you want to keep sampling rates low and reduce noise in
the image, you should: avoid using the “blur” parameter in the “shiny” and
“glass” surfaces unless you really need it; do not use depth of field if you
can get away with a post-processing blur; use nonphysical lights (“pointlight”,
“distantlight”, etc.) instead of physical and area lights.

33

6. Tuning Ray Tracing Parameters

Several time/quality knobs exist in the ray tracing engine – see the earlier sec-
tion on nonstandard options and attributes for details. In addition to ensuring
that opaque and non-shadow-casting objects are tagged as such, also be sure
that your max ray recursion level (Option "render" "max raylevel") is set
as low as possible (the default is 4, but you may be able to get away with as
little as 1 or 2 if you don’t have much glass or mutual reflection.

3.7 Compatibility Issues

This section details how BMRT differs from the RenderMan Interface 3.2 Specifica-
tion, as well as any issues related to other renderers.

3.7.1 RenderMan Interface Compliance

The rendrib renderer uses API’s that are very similar to the RenderMan Interface 3.2
standard. In fact, you may find that your scenes written to comply with the Render-
Man Interface 3.2 standard can be rendered with BMRT without modification. The
book Advanced RenderMan: Creating CGI for Motion Pictures by Apodaca and
Gritz, (Morgan-Kaufmann, 1999) should apply almost totally to BMRT. However,
compared to the published RenderMan standard, BMRT has several differences,
unimplemented features, and limitations:

• True displacement of surface points is only partially supported. If you dis-
place in a surface shader, or even in a displacement shader without using the
“truedisplacement” attribute, only the surface normals will be purturbed, the
points will not move. This usually looks fine as long as the bumps are small.
However, if you use the “truedisplacement” attribute, a displacement shader
will actually do what you expect and move the surface points.

True displacements are somewhat limited: (1) it only works for displacement
shaders, not surface shaders; (2) it uses lots of memory, and also takes more
time to render; (3) you cannot use “message passing” between the displacement
and surface shaders; (4) you must remember to set displacement bounds; (5)
you may get odd self-shadowing of surfaces during radiosity calculations if you
use too small a shadow bias.

• The following optional capabilities are not supported: Special Camera Projec-
tions, Spectral Colors.

• Motion Blur, Depth of Field, and Level of Detail are not supported in BMRT
2.6. Also, the Blobby and Curves primitives are not currently supported (but
they do work fine with rgl). We hope to have all of these features working in
future releases.

34

3.7.2 Issues with PRMan

Many people use both BMRT and Pixar’s PhotoRealistic RenderMan ((R) Pixar)
(sometimes called PRMan). While rendrib uses ray tracing and radiosity, PRMan
uses a scanline method called REYES. Though both renderers should take nearly the
same input, the difference in their underlying methods necessarily results in different
subsets of the RenderMan standard supported by the two programs. This section
lists some of the incompatibilities of the two programs. These differences should not
be construed as bugs in either program, but are mostly natural limitations of the
two rendering methods. This list is for the user who uses both programs, or wishes
to use one program to render output meant for the other.

• slc outputs compiled Shading Language as “.slc” files (either interpreted ASCII
or DSO’s), which are not compatible with Pixar’s “.slo” files. The Shading
Language source files (“.sl”) are almost completely compatible

• The texture mapping and environment mapping routines in rendrib take TIFF
files directly (either scanline or tiled), and do not read PRMan’s proprietary
texture format.

• PRMan doesn’t support true area light sources (but instead places a point
light at the current origin), but rendrib supports area light sources correctly.

• rendrib’s support of true displacement is somewhat more limited than PRMan’s,
as detailed in the previous subsection.

• PRMan’s trace() function always returns 0, and does not support the nonstan-
dard visibility, fulltrace, raylevel, and isshadowray functions which
rendrib implements.

• PRMan does not support Imager, Interior, or Exterior shaders. rendrib fully
supports these kinds of shaders.

3.8 Odds and Ends

There are a bunch of other things you should know about rendrib but we couldn’t
figure out where they shoudl go in the manual. In no particular order:

• Before rendering any RIB specified on the command line or piped to it, rendrib
will first read the contents of the file $BMRTHOME/.rendribrc. If there is no
environment variable named $BMRTHOME, then the file $HOME/.rendribrc is
read instead. In either case, by putting RIB in one of these places, you can
set various options for rendrib before any other RIB is read.

• When using the new Shading Language rendererinfo() function to query
the "renderer", the value returned is ”BMRT”.

35

Chapter 4

Shaders and Textures

You’ve probably already used some of the “standard” shaders such as "matte",
"metal", "plastic", and so on. Part of the real power of BMRT is the ability to
write your own shaders to control the appearance of your objects. There are several
types of shaders:

Surface shaders describe the appearance of surfaces and how they react to the
lights that shine on them.

Displacement shaders describe how surfaces wrinkle or bump.

Light shaders describe the directions, amounts, and colors of illumination dis-
tributed by a light source in the scene.

Volume shaders describe how light is affected as it passes through a participating
medium such as smoke or haze.

Imager shaders describe color transformations made to final pixel values before
they are output.

There are several standard shaders available. Standard surface shaders include
"constant", "matte", "metal", "plastic", "shiny", and "paintedplastic". Stan-
dard light source shaders are "ambientlight", "distantlight", "pointlight",
and "spotlight". Standard volume shaders are "depthcue" and "fog". The only
standard displacement shader is "bumpy".

4.1 Compiling interpreted shaders with slc

Once you have written a shader, save it in a file whose name ends with the extension
.sl. To compile it, do the following:

slc myshader.sl

This will result either in a compiled shading language object file called myshader.slc,
or you will get error messages. Hopefully, the error message will direct you to the

36

line in your file on which the error occurred, and some clue as to the type of error.
slc only can compile one .sl file at a time.

The slc program takes the following command line arguments:

-Ipath

Just like a C compiler, the -I switch, followed immediately by a directory
name (without a space between -I and the path), will add that path to the
list of directories which will be searched for any files that are requested by
any #include directives inside your shader source. Multiple directories may
be specified by using multiple -I switches.

-Dsymbol
-Dsymbol =val

Just like a C compiler, the -D switch, followed immediately by a symbol name
(and possibly with an initial value), will define a proprocessor macro symbol.
This allows you to have conditional compilation based on defined symbols
using the #if and #ifdef statements in your shader source code files. The slc
program automatically defines the symbol BMRT.

-o name

Specifies an alternate filename for the resulting .slc file. Without this switch,
the output file is derived from the name of your shader.

-q

Quiet mode, only reports errors without any chit-chat.

-v

Verbose mode, lots of extra chit-chat.

-x

Encrypts the resulting .slc file.

-arch

Just print out the architecture name (e.g., sgi m3, linux, etc.).

-dso

On some platforms, this will compile your shader to a machine-code DSO file.
See the following section for details.

IMPORTANT NOTE: slc uses the C preprocessor (cpp). On Unix-like operating
systems, this executable is usually kept in the /lib directory, so that’s where slc
looks for it. If it can’t find it there (or, like on Windows, it doesn’t normally exist at
all), slc will look for it in $BMRTHOME/bin. So you will need to set the environment
variable BMRTHOME to point to the directory in which you have installed BMRT.

37

Since .sl files are passed through the C preprocessor, you can use the #include
directive, just as you would for C language source code. You can also give an explicit
path for include files using the -I command line option to slc (just like you would
for the C compiler). You can also use #ifdef and other C preprocessor directives in
a shader. A variable named BMRT is defined, so you can do something like #ifdef
BMRT.

The output of slc is an ASCII file for a sort of “assembly language” for a vir-
tual machine. When rendrib renders your frame and needs a particular shader,
this assembly code is read, converted to bytecodes, and interpreted to execute your
shader. Because the slc’s output is ASCII and is for a virtual machine, it is com-
pletely machine-independent. In other words, you can compile your shader on one
platform, and use that .slc file on any other platform. But, like any other in-
terpreted bytecode, even though BMRT’s interpreter is fairly efficient, it is not as
efficient as compiled machine code.

4.2 Compiling .sl files to DSO’s/DLL’s

slc is also capable of compiling programs to native machine code (by first translating
into C++ and then invoking the system’s C++ compiler), and dynamically loading
the code and executing it directly when the shader is needed by rendrib. Some com-
plex shaders can run significantly faster (translating into overall rendering speedups
of between 10-50%) if you compile your shaders into DSO’s.

You can do this with the -dso flag (or -dll on Windows):

slc -dso myshader.sl

This will create a file called myshader.ARCH.slc, where ARCH is the code name
of the platform (such as linux, intelnt, sgi m3, etc.).

There are several very important limitations and caveats to remember when
using DSO’s:

• The resulting DSO file (the ARCH.slc file) is specific to one platform. If you
have a multiplatform environment or wish to distribute the DSO shader to
users with different platforms, you will have to recompile the source on that
platform.

• Not all shaders will have speed benefits by being compiled into DSO’s. Gen-
erally, the biggest benefit will be from shaders that have lots of instructions.
Short, inexpensive shaders like plastic will render no faster as a DSO than
when interpreted. Shaders which are expensive specifically because they have
many noise or texture calls will not speed up much as DSO’s, because the
time is already being spent within those expensive operations, which are al-
ready compiled in the renderer. But some shaders do speed up quite a bit –
for example, the smoke.sl shader that comes with BMRT runs about twice as
fast when compiled into a DSO as when interpreted. If your scene rendering
time is dominated by executing complex shaders, you can probably speed up

38

rendering by around 25% by selectively compiling your most expensive shaders
as DSO’s.

• This feature is relatively new and untested, having first been documented
and enabled with BMRT 2.5 (and only enabled for Windows with BMRT
2.6). Therefore, it’s likely that some people will try to compile shaders that
slc cannot figure out how to translate into C++. In such a case, you will
receive error messages that appear to eminate from the C compiler. If this
happens, it will be very helpful if you could send the original shader source to
bugs@exluna.com so that we can fix the compiler.

• It’s also possible that the translation to C++ is buggy. If you experience
any quirky behavior, you should first delete the compiled .slc file and compile
using ordinary slc, without using the -dso flag. If the shader behavior differs
depending on whether or not you use the -dso flag, please report the problem
(with an example) to bugs@exluna.com.

4.3 Using slctell to list shader arguments

The slctell program reports the type of a shader and its parameter names and
default values. Usage is simple: just give the shader name on the command line.
For example,

slctell plastic

reports:

surface "shaders/plastic.slc"
"Ka" "uniform float"

Default value: 1
"Kd" "uniform float"

Default value: 0.5
"Ks" "uniform float"

Default value: 0.5
"roughness" "uniform float"

Default value: 0.1
"specularcolor" "uniform color"

Default value: "rgb" [1 1 1]

The slctell program should correctly report shader information for both inter-
preted and compiled DSO shaders. Note, however, that in either case, slctell can
only report the default values for parameters that are given defaults by simple as-
signment. In other words, if a constant (or a named space point) is used as the
default value, slctell will report it correctly, but if the default is the result of a func-
tion, complex computation, or involves a graphics state variable, there is no way
that slctell will correctly report the default value.

39

4.4 Making tiled TIFF files with mkmip

BMRT has always used TIFF files for stored image textures (as opposed to PRMan,
which requires you to convert to a proprietary texture format). Though BMRT
accepts regular scanline (or strip) oriented TIFF files, it is able to perform certain
optimizations if the TIFF files you supply happen to be tile-oriented. In particular,
BMRT is able to significantly reduce the memory needed for texture mapping with
tiled TIFF files.

The mkmip program converts scanline TIFF files into multiresolution, tiled TIFF
files. The mkmip program will also convert zfiles into shadow maps (tiled float
TIFFs) and will combine six views into a cube face environment map. Command
line usage is:

• For textures:

mkmip [options] tifffile texturefile

• For shadows:

mkmip -shadow [options] zfile shadowfile

• For cube-face environment maps:

mkmip -envcube [options] px nx py ny pz nz envfile

• For latitude-longitude environment maps:

mkmip -envlatl [options] tifffile envfile

where options include:

-smode wrapmode

-tmode wrapmode

-mode wrapmode

where wrapmode is one of: periodic, black, or clamp. This specifies the
behavior of the texture when outside the [0,1] lookup range. Note that -smode
and -tmode specify wrapping behavior separately for the s and t directions,
while -mode specifies both at the same time. The default behavior is black.

-resize option

Controls the resizing of non-square and non-power-of-two textures when being
converted to MIP-maps. The option may be any of: up, down, round, up-,
down-, round-. The up, down, and round indicates that the texture should
be resized to the next highest power of two, the next lowest power of two,
of the “nearest” power of two, respectively. For each option, the trailing
dash indicates that the texture coordinates should always range from 0 to 1,

40

regardless of the aspect ratio of the original texture. Absence of the dash
indicates that the texture should encode its original aspect ratio and adjust
the texture coordinates appropriately at texture lookup time. The option that
probably gives the most intuitive use is up-. The default is up.

-fov fovangle

for envcube only, specifies the field of view of the faces.

Note: rendrib specifically wants TIFF files as texture and environment maps.
The files can be 8, 16, or 32 bits per channel, but cannot be palette color files. Single
channel greyscale is okay, as are 3 channel RGB or 4 channel RGBA files. Ordinary
scanline TIFF is fine, but if you use the mkmip program to pre-process the textures
into multiresolution tiled TIFF, your rendering will be much more efficient.

41

Chapter 5

Miscellaneous Tools

5.1 Writing RIB with libribout

You may wish to write a C or C++ program which makes calls to the procedural
interface, resulting in the output of RIB. The resulting RIB may be piped directly
to another process (such as a previewer), or redirected to a file for later rendering.
The library libribout.a (or libribout.lib on Windows) does this. This library
provides a ‘C’ language binding for the RenderMan Procedural Interface.

The libribout library has all its public routines use the C language binding,
but its implementation contains C++ code, so it is important to either use a C++
compiler to link with it, or else to manually include the standard C++ libraries.

If your program is written in C++, you can link libribout in the usual way.
The following example shows how to link with this library on a typical Unix machine:

CC myprog.c -o myprog -lribout -lm

If your program is written in ordinary C, then you could compile with C, then link
with C++:

cc -c myprog.c
CC myprog.o -o myprog -lribout -lm

On an SGI, it’s apparently important to include -lC on the linkage line, to ensure
that the C++ standard library is linked properly.

In any case, this will result in an executable, myprog, which outputs RIB requests
to standard output. This may be redirected to a specific RIB file as follows:

myprog > myfile.rib

Remember that the RiBegin statement usually only takes the argument RI NULL:

RiBegin (RI_NULL);

The default of sending RIB to stdout can be overridden by providing a filename
to the RiBegin statement in your program. For example, suppose your program
contains the following statement instead:

42

RiBegin ("myfile.rib");

In this case, the RIB requests corresponding to the Ri procedure calls will be
sent to the file "myfile.rib" rather than to standard output. In addition, if the
filename you specify starts with the ‘|’ character, the library will open a pipe to
the program specified after the ‘|’ symbol. For example, RiBegin ("|rgl"); will
cause the RIB you produce to be piped directly to a running rgl process without
creating an intermediate RIB file.

Remember to tell the C compiler where the ri.h and libribout.a files are, or
it won’t be able to find them.

5.2 Parsing Shader Arguments

Pixar’s PhotoRealistic RenderMan implementation provides a linkable library which
allows a developer to read a compiled shader file (.slo) to determine what type of
shader it is and what parameter names and defaults belong to that shader. Since
Pixar’s .slo format is different from BMRT’s .slc format, similar functionality is
provided to parse the .slc files. The C language header file for these is slc.h. This
file should be fairly self-documenting, and certainly anybody with experience using
Pixar’s libsloargs.a library ought to have an easy time using it.

These routines are all contained in libribout.a, so you should link your software
against libribout.a if you are outputting RIB or parsing shader arguments or both.

However, if you want to parse BMRT shader arguments but use some other RIB
client library (such as PRMan’s librib.a), then there is an additional library you
can use, libslcargs.a, which contains only the routines for .slc file parsing, but
none of the symbols which are also expected to be in a RIB client library.

5.3 iv – an Image Viewer

Once you render images, you need to view them. There are dozens, or possibly
hundreds, of programs that can display your ordinary TIFF images that BMRT
produces. But probably none of them can display the tiled TIFF images used for
textures, environment maps, and shadow maps. Nor can most of them handle 16-bit
and floating point images. And even for ordinary images, many image viewers are
lacking in certain features that you may find handy. So we have provided iv , the
Image Viewer tool.

5.3.1 Invoking iv from the command line

Invoking iv is very simple:

iv [options] file1 ... filen

Any number of files may be specified on the command line. Several options may
also be specified before the files are listed:

-g gamma

43

Sets the gamma correction for subsequent images. The gamma parameter is
a floating point number, which default to 1.0. Without the -g option, the
gamma correction will be taken from the $GAMMA environment variable. If
no such environment variable exists, no gamma correction will be performed.
Note that you can have multiple -g options on the command line, interspersed
with image file names (this lets you correct different images with different
gamma values).

-info

When this flag is used, the name and resolution of each file will be printed to
stdout.

-sb

Normally, you can use the middle mouse button to “drag” the image around
if the image resolution is greater than your display window. If you use the
-sb command line option, iv will also display scroll bars at the edge of the
window.

5.3.2 iv hot keys and mouse commands

Once you are running iv and viewing images, there are several keyboard and mouse
commands that you may find useful:

PgUp PgDn

The PgUp and PgDn keys cycle you to the previous and next images in the list
of images.

ENTER

The ENTER key will reload the current image from disk.

r g b a c

The r, g, b, and a keys will cause iv to display just the red, green, blue, or
alpha channels of images. The c key will display full color again.

f

The f key reframes the window. That is, it will readjust the size of the display
window to match the resolution of the currently viewed image.

p

The p key opens a pixel view window that shows you a zoomed view of the
pixels surrounding the mouse position, and numeric values for the pixel under
the cursor. Hitting ESC with the cursor in the pixel view window will close the
pixel view window (but not the main window).

q

44

The q key causes iv to close its windows and exit.

s

The s invokes pixel select mode. In this mode, a single pixel is selected for the
pixel view window. The selected pixel no longer follows the mouse cursor, but
can be moved with the four arrow keys. Hitting s again returns to the usual
mouse cursor.

Left-click

Clicking the left mouse button inside the image window zooms in (makes the
pixels bigger on screen).

Right-click

Clicking the right mouse button inside the image window zooms out (makes
the pixels smaller on screen).

Middle-drag

Moving the mouse with the middle button held down will drag the image
around the window, if the image resolution is greater than the window size.

5.4 Simple Image Compositing with composite

BMRT includes a program to perform elementary image compositing operations. If
you render your images with alpha channels (i.e. "rgba"), then coverage information
will be stored with every pixel in the image. For the purposes of composite, RGB
images without alpha channels will be assumed to have an alpha of 1.0 at every
pixel.

composite may be run as follows:

composite file1 over file2 -o output

composite file1 in file2 -o output

composite file1 out file2 -o output

composite file1 atop file2 -o output

composite file1 xor file2 -o output

Composite images file1 and file2 using one of the standard image compositing
operators described in (Porter & Duff, ”Digital Image Compositing”, Pro-
ceedings of SIGGRAPH ’84, pp. 253-259), storing the composited image in
file output.

composite file1 plus file2 -o output

composite file1 minus file2 -o output

45

Add or subtract two files, storing the results in file output. Pixels are clamped
to [0,maxval], where maxval==255 for 8 bit images, maxval==65535 for 16
bit images.

composite file1 scale float -o output

composite file1 dissolve float -o output

composite file1 opaque float -o output

These three unary operators take a floating point number, rather than a file-
name, as their second operand. They all scale the channels of the image, but
in slightly different ways. The scale operator multiples the RGB channels,
but leaves the alpha alone – i.e. it can brighten or darken an image without
changing its transparency. The dissolve operator scales the alpha along with
the RGB. Finally, the opaque operator will scale only the alpha channel.

Hint for beginners: you probably want over.

5.5 Setting default options and attributes

Remember that both of BMRT’s renderers (rendrib and rgl) read from a file called
.rendribrc both in the local directory where it is run, and also in your home
directory. This file can be plain RIB, which means that if you want to set any
defaults (default resolution, shader search path, texture cache size, etc.) you can
just put the Option or Attribute lines in this file in your home directory.

5.6 farm : Poor Man’s Render Farm

Many people ask how they can divide rendering of a single frame among several
processors or machines. The simple Perl script farm accomplishes this task, in a
relatively rudimentary way.

5.6.1 How to use farm

1. Set the environment variable BMRT FARM to be a blank-separated list of the
names of machines which can be used as render servers. Machines with mul-
tiple processors should be listed multiple times. For example, if you have a
machine named ”fred” with two processors, and one named ”wilma” with one
processor, then run:

setenv BMRT FARM "fred fred wilma"

if you use csh. If you use sh, try:

export BMRT FARM="fred fred wilma"

2. Make sure that rendrib is in the default path of each remote machine, and
that mkmosaic is in the path on the local machine.

3. Run farm: farm myfile.rib

46

5.6.2 What farm does

First, farm will look at your RIB file to figure out the resolution and the name of the
TIFF file that it will render. It will choose an appropriate number of subwindows
to render.

One by one, it will send the frame to machines on your BMRT FARM list, using
the -crop and -of flags to make rendrib render particular crop windows. Machines
whose load averages are too high will automatically refuse the frames.

When farm sees that all the subsections are finished (each will leave a little
file indicating that it’s done), it will assemble all the pieces using the mkmosaic
program, and clean up all the cruft files.

5.6.3 Important farm restrictions

1. Because farm relies on rsh, you can only use it on UNIX (or UNIX-like)
operating systems.

2. You can’t use farm to render to the display (the -d flag). It must be rendering
to a TIFF file.

3. Don’t try using any other rendrib command line flags. Request all image
options (like radiosity options) in the RIB file with Option and Attribute
statements.

4. Hitting Control-C to interrupt farm will kill only farm, but will leave the
individual crop windows rendering on the remote machines. Beware.

47

Chapter 6

Using BMRT as a “Ray Server”
for PRMan

This chapter explains how to render scenes using PRMan with ray traced shadows
and reflections, using BMRT as an ”oracle” to provide answers to computations that
PRMan cannot solve. We describe a method of actually stitching the two renderers
together using a Unix pipe, allowing each renderer to perform the tasks that it is
best at.

6.1 Introduction

PhotoRealistic RenderMan has a Shading Language function called trace(), but
since there is no ability in PRMan to compute global visibility, the trace() function
always returns 0.0 (black). This is no way to ask for any other global visibility
information in PRMan. Though PRMan often can fake reflections and shadows
with texture mapping, there are limitations:

• Environment mapped reflections are only “correct” from a single point. En-
vironment mapping a large reflective object has errors (which, to be fair, are
often very hard to spot). Mutually reflective objects are a big pain in PRMan.

• Environment and shadow maps require multiple rendering passes, and require
TD time to set up properly.

• Dealing with shadow maps - selecting resolution, bias, blur, etc. - can be
time consuming and still show artifacts in the shadows. Also, shadows cannot
motion blur in PRMan, and cannot correctly handle opacity (or color) changes
in the object casting a shadow.

• Refraction is nearly impossible to do correctly, since even when environment
mapping is acceptable, PRMan cannot tell the direction that a ray exits a
refractive object, since the “backside” is not available for ray tracing.

48

• The Blue Moon Rendering Tools (BMRT) contains a renderer, rendrib, which
is largely compatible with the RenderMan 3.2 specification and supports ray
tracing, radiosity, area lights, volumes, etc. It can compute ray traced re-
flections, shadows, and so on, but is much slower than PRMan for geometry
which doesn’t require these special features.

Both renderers share much of their input, and to a very large extent can read
the same geometry description and shader source code files. (Note: The two render-
ers each have different formats for stored texture maps and compiled shaders, and
support different feature sets.) It’s tempting to want to combine the effects of the
two renderers, using each for those effects that it achieves well. Several strategies
come to mind:

1. Choosing one renderer or the other based on the project, sequence, or shot.
Perhaps a strategy might be to use PRMan most of the time, BMRT if you
need radiosity or ray tracing.

2. Rendering different objects (or layered elements) with different renderers, then
compositing them together to form final frames.

3. Rendering different lighting layers with different renderers, then adding them
together. For example, one might render base color with PRMan, but do an
“area light pass” (or radiosity, or whatever) in BMRT.

All of these approaches have difficulties (though all have been done). Strategy
#1 may force you to choose a slow renderer for everything, just because you need
a little ray tracing. There may also be problems matching the exact look from shot
to shot, if you are liberally switching between the two renderers. Strategies #2
and #3 have potential problems with ”registration,” or alignment, of the images
computed by the renderers. Also, #3 can be very costly, as it involves renders with
each renderer.

The attraction of using the two renderers together, exploiting the respective
strengths of both programs while avoiding undue expense, is alluring. Larry Gritz
has developed a method of literally stitching the two programs together.

6.2 Background: DSO Shadeops in PRMan

RenderMan Shading Language has always had a rich library of built-in functions
(sometimes called “shadeops”), already known to the SL compiler and implemented
as part of the runtime shader interpreter in the renderer. This built-in function
library included math operations (sin, sqrt, etc.), vector and matrix operations,
coordinate transformations, etc. It has also been possible to write SL functions in
Shading Language itself, however, native SL functions have several limitations.

PRMan 3.8 (and later) allows you to write new built-in SL functions in ‘C’ or
‘C++’. Writing new shadeops in C and linking them as DSO’s has many advantages
over writing functions in SL, including:

49

• The resulting object code from a DSO shadeop is shared among all its uses in
a renderer. In contrast, compiled shader function code is inlined every time
the function is called, and thus is not shared among its uses, let along among
separate shaders that call the same function.

• DSO shadeops are compiled to optimized machine code, whereas shader func-
tions are interpreted at runtime. While PRMan has a very efficient interpreter,
it is definitely slower than native machine code.

• DSO shadeops can call library functions from the standard C library or from
other third party libraries.

• Whereas functions implemented in SL are restricted to operations and data
structures available in the Shading Language, DSO shadeops can do anything
you might normally do in a C program. Examples include creating complex
data structures or reading external files (other than textures and shadows). For
example, implementing an alternative noise() function, which needs a stored
table to be efficient, would be exceptionally difficult in SL, but very easy as a
DSO shadeop.

DSO shadeops also have several limitations that you should be aware of:

• DSO shadeops only have access to information passed to them as parameters.
They have no knowledge of “global” shader variables such as P, parameters to
the shader, or any other renderer state. If you need to access global variables
or shader parameters or locals, you must pass them as parameters.

• DSO shadeops act as strictly point processes. They possess no knowledge of
the topology of the surface, derivatives, or the nature of surface grids (in the
case of a REYES renderer like PRMan). If you want to take derivatives, for
example, you need to take them in the shader and pass them as parameters
to your DSO shadeop.

• DSO shadeops cannot call other builtin shadeops or any other internal entry
points to the renderer itself.

Further details about DSO shadeops, including exactly how to write them, are
well beyond the scope of these course notes. For more information, please see the
RenderMan Toolkit 3.8 User Manual.

6.3 How Much Can We Get Away With?

So PRMan 3.8 has a magic backdoor to the shading system. One thing it’s good for
is to make certain common operations much faster, by compiling them to machine
code. But it also has the ability to allow us to write functions which would not
be expressible in SL at all — for example, file I/O, process control or system calls,
constructing complex data structures, etc.

50

How far can we push this idea? Is there some implementation of trace() that
we can write as a DSO which will work? Yes! The central idea is to render using
PRMan, but implement trace as a call to BMRT. In this sense, we would be using
BMRT as an oracle, or a ray server, that could answer the questions that PRMan
needs help with, but let PRMan do the rest of the hard work.

BMRT (release 2.3.6 and later) has a ray server mode, triggered by the command
line option -rayserver. When in this mode, instead of rendering the frame and writing
an image file, BMRT reads the scene file but it just waits for “ray queries” to come
over stdin. When such queries (specified by a ray server protocol) are received,
BMRT computes the results of the query, and returns the value by sending data
over stdout.

The PRMan side is a DSO which, when called, runs rendrib and opens a pipe to
its process. Thereafter, calls to the new functions make ray queries over the pipe,
then wait for the results.

6.4 New Functionality

This hybrid scheme effectively adds six new functions that you can call from your
shaders:

color trace (point from, vector dir)

Traces a ray from position from in the direction of vector dir. The return
value is the incoming light from that direction.

color visibility (point p1, p2)

Forces a visibility (shadow) check between two arbitrary points, retuning the
spectral visibility between them. If there is no geometry between the two
points, the return value will be (1,1,1). If fully opaque geometry is between
the two points, the return value will be (0,0,0). Partially opaque occluders
will result in the return of a partial transmission value.

An example use of this function would be to make an explicit shadow check
in a light source shader, rather than to mark lights as casting shadows in the
RIB stream (as described in the previous section on nonstandard attributes).
For example:

light
shadowpointlight (float intensity = 1;

color lightcolor = 1;
point from = point "shader" (0,0,0);

float raytraceshadow = 1;)
{

illuminate (from) {
Cl = intensity * lightcolor / (L . L);
if (raytraceshadow != 0)

Cl *= visibility (Ps, from);

51

}
}

float rayhittest (point from, vector dir,
output point Ph, output vector Nh)

Probes geometry from point from looking in direction dir. If no geometry is
hit by the ray probe, the return value will be very large (1e38). If geometry is
encountered, the position and normal of the geometry hit will be stored in Ph
and Nh, respectively, and the return value will be the distance to the geometry.

float fulltrace (point pos, vector dir,
output color hitcolor, output float hitdist,
output point Phit, output vector Nhit,
output point Pmiss, output point Rmiss)

Traces a ray from pos in the direction dir.

If any object is hit by the ray, then hitdist will be set to the distance of the
nearest object hit by the ray, Phit and Nhit will be set to the position and
surface normal of that nearest object at the intersection point, and hitcolor
will be set to the light color arriving from the ray (just like the return value
of trace).

If no object is hit by the ray, then hitdist will be set to 1.0e30, hitcolor will
bet set to (0,0,0).

In either case, in the course of tracing, if any ray (including subsequent rays
traced through glass, for example) ever misses all objects entirely, then Pmiss
and Rmiss will be set to the position and direction of the deepest ray that
failed to hit any objects, and the return value of this function will be the
depth of the ray which missed. If no ray misses (i.e. some ray eventually hits
a nonreflective, nonrefractive object), then the return value of this function
will be zero. An example use of this functionality would be to combine ray
tracing of near objects with an environment map of far objects.

The code fragment below traces a ray (for example, through glass). If the
ray emerging from the far side of the glass misses all objects, it adds in a
contribution from an environment map, scaled such that the more layers of
glass it went through, the dimmer it will be.

missdepth = fulltrace (P, R, C, d, Ph, Nh, Pm, Rm);
if (missdepth > 0)

C += environment ("foo.env", Rm) / missdepth;

float isshadowray ()

Returns 1 if this shader is being executed in order to evaluate the transparency
of a surface for the purpose of a shadow ray. If the shader is instead being

52

evaluated for visible appearance, this function will return 0. This function can
be used to alter the behavior of a shader so that it does one thing in the case
of visibility rays, something else in the case of shadow rays.

float raylevel ()

Returns the level of the ray which caused this shader to be executed. A
return value of 0 indicates that this shader is being executed on a camera
(eye) ray, 1 that it is the result of a single reflection or refraction, etc. This
allows one to customize the behavior of a shader based on how “deep” in the
reflection/refraction tree.

6.5 How to use it

Using PRMan as a ray tracer is straightforward:

1. Use these functions in your shaders. In any shader that uses the functions,
you should:

#include "rayserver.h"

If you inspect rayserver.h (in the examples directory), you’ll see that most
the functions described above are really macros. When compiling with BMRT’s
compiler, the functions are unchanged (all three are actually implemented in
BMRT). But when compiling with PRMan’s compiler, the macros transform
their arguments to world space and call a function called rayserver().

2. Compile the shaders with both BMRT and PRMan’s shader compilers. When
compiling for PRMan, make sure that the DSO rayserver.so (in the BMRT
lib directory) is in your include path (-I).

3. Render the file using the frankenrender script that comes with BMRT. This
is a Perl script that sets up the environment that controls the ray server, and
passes the correct arguments to both PRMan and BMRT. Just look at the
script for more details on how it works and what arguments are valid.

If you are rendering the same geometry with both renderers, just use frankenrender
in the same way as you would use prman or rendrib:

frankenrender teapots.rib

If you want to give separate RIB files to each renderer, use the -prman and
-bmrt flags:

frankenrender common.rib -bmrt bmrt.rib -prman prman.rib

That’s it!

53

6.6 Pros and Cons

The big advantage here is that you can render most of your scene with PRMan,
using BMRT for tracing individual rays on selected objects or calculating shadows
for selected lights. This is much faster than rendering in BMRT, particularly if you
only tell the ray tracer about a subset of the scene that you want in the shadows or
reflections. The following effects are utterly trivial to produce with this scheme:

• Ray cast shadows, including shadows that correctly respond to color and opac-
ity of occluding objects. Moving objects can cast correct motion-blurred shad-
ows.

• Correct reflections, including motion blur.

• Real refraction for glass, water, etc.

• No setup time or multi-pass rendering for these effects.

The big disadvantage is that it requires two renderers to both have the scene
loaded at the same time. This can be alleviated somewhat by reducing the scene
that the ray tracer sees, or by telling the ray tracer to use a significantly reduced
tessellation rate, etc. But still, it’s a significant memory hit compared to running
PRMan alone.

All of the usual considerations about compatibility between the two renderers
apply. Be particularly aware of new PRMan primitives and SL features not currently
supported by BMRT, texture file format differences, results of noise() functions,
etc.

All of the usual considerations about compatibility between the two renderers
apply. Be particularly aware of new PRMan primitives and SL features not currently
supported by BMRT, texture file format differences, results of noise() functions,
etc.

Note that by default, all rays will be traced from the positions at the shutter
open time.

6.7 Efficiency Tips

Here are several tips to help you speed up the ray server.

• Use the -prman and -bmrt flags to give separate RIB files to each renderer,
eliminating the objects which do not need to be visible in reflections or re-
fractions from the file for rendrib. Where this is not possible, at least use
Attribute "render" "visibility" to make objects invisible in reflections
if they are not needed to be seen in reflections (and similarly for shadows).

• Be sure that your max ray recursion level (Option "render" "max raylevel")
is set as low as possible (the default is 4, but you may be able to get away
with as little as 1 or 2 if you don’t have much glass or mutual reflection.

54

• It’s possible that objects which are only visible in reflections or refractions can
be tessellated even more coarsely than usual. Try:

Attribute "render" "patch multiplier" [n]}
The -rayserver mode automatically sets n to 0.5, indicating that patches
should be diced only half as finely when serving rays as when rendering whole
frames. Try reducing n to 0.25 or even lower, to increase speed and decrease
memory use. Make n as low as you can get it without seeing visible artifacts.

55

Bibliography

[Apodaca, 1990] Apodaca, A. A., editor (1990). ACM SIGGRAPH ’90 Course
Notes #18: The RenderMan Interface and Shading Language.

[Apodaca, 1992] Apodaca, A. A., editor (1992). ACM SIGGRAPH ’92 Course
Notes #21: Writing RenderMan Shaders.

[Apodaca, 1995] Apodaca, A. A., editor (1995). ACM SIGGRAPH ’95 Course
Notes #4: Using RenderMan in Animation Production.

[Apodaca and Gritz, 1999a] Apodaca, A. A. and Gritz, L., editors (1999a). ACM
SIGGRAPH ’98 Course Notes #11: Advanced RenderMan: Beyond the Compan-
ion.

[Apodaca and Gritz, 1999b] Apodaca, A. A. and Gritz, L. (1999b). Advanced Ren-
derMan: Creating CGI for Motion Pictures. Morgan-Kaufmann.

[Gritz, 1993] Gritz, L. (1993). Computing specular-to-diffuse illumination for two-
pass rendering. M.s. thesis, Department of Electrical Engineering and Computer
Science, The George Washington University.

[Gritz and Apodaca, 1999] Gritz, L. and Apodaca, A. A., editors (1999). ACM
SIGGRAPH ’99 Course Notes #25: Advanced RenderMan: Beyond the Com-
panion.

[Gritz and Hahn, 1996] Gritz, L. and Hahn, J. K. (1996). BMRT: A global illumi-
nation implementation of the renderman standard. Journal of Graphics Tools,
1(3). ISSN 1086-7651.

[Pixar, 1989] Pixar (1989). The RenderMan Interface, Version 3.1. Pixar.

[Upstill, 1990] Upstill, S. (1990). The RenderMan Companion: A Programmer’s
Guide to Realistic Computer Graphics. Addison-Wesley.

56

	Introduction
	Reporting Bugs
	Copyrights & Trademarks
	Licensing Arrangement

	Previewing scene files with rgl
	Command Line Options
	Window Size and Position
	Drawing Styles
	File Output Options
	Animation

	Implementation-dependent Options and Attributes
	Search Paths
	Drawing Options

	Limitations of rgl
	Odds and Ends

	Photo-realistic rendering with rendrib
	Command Line Options
	Image Display Options
	Status Output
	Radiosity
	Miscellaneous Options

	Implementation-dependent Options and Attributes
	Rendering Options
	Search Paths
	Visibility of Primitives
	Displacement and Subdivision Attributes
	Object Appearance
	Light Source Attributes
	Finite Element Radiosity Controls
	Monte Carlo Global Illumination Controls
	Options for Photon Mapping for Caustics
	Other Options

	Extra Ray Tracing Features
	Indirect Illumination
	Using Finite Element Radiosity
	Using Monte Carlo Irradiance

	Caustics
	Optimizing Rendering Time
	Compatibility Issues
	RenderMan Interface Compliance
	Issues with PRMan

	Odds and Ends

	Shaders and Textures
	Compiling interpreted shaders with slc
	Compiling .sl files to DSO's/DLL's
	Using slctell to list shader arguments
	Making tiled TIFF files with mkmip

	Miscellaneous Tools
	Writing RIB with libribout
	Parsing Shader Arguments
	iv -- an Image Viewer
	Invoking iv from the command line
	iv hot keys and mouse commands

	Simple Image Compositing with composite
	Setting default options and attributes
	farm: Poor Man's Render Farm
	How to use farm
	What farm does
	Important farm restrictions

	Using BMRT as a ``Ray Server'' for PRMan
	Introduction
	Background: DSO Shadeops in PRMan
	How Much Can We Get Away With?
	New Functionality
	How to use it
	Pros and Cons
	Efficiency Tips

